Onionmap Patents
Patent #1 Translation OSAT-Geocode:

Inventor: Young Kim, Eddie Kim, Jonathan Lee
Business concept:

Background:

Onionmap Spatial Analysis Technology (OSAT) is a proprietary process to create the beautiful and easy 3D building and map. OSAT is best to be understood as a piece of outstanding art work. Anyone can draw a building and a landscape, but depending on the ability of each artist, each drawing gives different human reactions. OSAT is not patented but it is protected under Onionmap trade mark and copy right.
OSAT is not scaled because OSAT wants to achieve the beautiful representation of a 3D building and the landscape. The proprietary process has a complex making process in order to achieve the beautiful and easy visual representation of the 3D building and the map. Although it is not scale and there is no consistent way of producing each 3D building and the map, there is a need to translate a Geocode to OSAT code so a location in the real world can be identified on the OSAT visual online interactive map.
Because each OSAT city map is unique, the translation from Geocode to each OSAT map is also unique. However, this unique process is consistent and replicable and accurate. And this unique process of translation is the core component to link to all the business functions of Onionmap products that based on OSAT map. Hence Onionmap intends to patent this process.
Scientific Process of Translation from Geocode to OSAT code

To initialize our transcoding engine, we must follow these steps:

First, we take our map and find the total width and total height.

Next we plot the longitude and latitude pairs for each corner of the map. (You can use Google maps to find this data)

Once we plot these points, we need to find the exact north/south slope (simply find a street or 2 points on the map that are perfectly parallel to the standard longitude lines)

Using this information, calculate the slope. (Rise over run)

Then we find the exact east/west slope on the map. (Simply find a street or 2 points on the map that are perfectly parallel to the standard latitude lines)

Using this information, calculate the slope. (Rise over run)

m = (y2 - y1) / (x2 - x1)

How the transcoding engine works:

Given the longitude x, we find 2 corners of the map where x lies between the longitude counterpart of its Geocode location. (If x does not lie between any 2 corners' longitude values, then the target location is outside of our map)

We then find where x lies in relevance to the longitude values of these 2 corners.

ratio = (corner1 - x) / (corner2 - corner1)
Using the slope north and south slope, we find the y-intercept of each of these longitude lines using the following equation in slope intercept form:

y = mx + b (x and y are onionmap coordinates)

Once we solve for b for each corner (corner1_b, corner2_b), we apply the ratio to our y-intercepts and solve for target_b.

ratio = (corner1_b - target_b) / (corner2_b - corner1_b)
Once we have solved for target_b we plug target_b and the north and south slope m into our equation:

y = mx + b

and we have obtained the equation for our first line longitude_line.

Next we repeat this same process to find our latitude_line by using our east and west slope, and the latitude counterparts of our geocode data.

Once we have solved for latitude_line and longitude_line, we find the intersection of these 2 lines by solving for y and x.

First we solve for x:

(m1 * x) + b1 = (m1 * x) + b2

Then we solve for y:

y = m1 * x + b1 OR

y = m2 * x + b2

We now have our (x,y) pair.

Increase accuracy: so far we take 4 points, corner points, for the translation. If we take 4 more additional points, we can increase accuracy.
The translation for OSAT code to Geocode is a reverse process of the above process.

Technology Product:
The following are the initial ‘working’ product in the form of computer software code. Just like every other software, this product will evolve with the time.

Excerpt of Geocode.php (class)

<?php

/*

Geocode class

Usage:

if(!is_object($Geocode)) $geocode = new Geocode($CITY);

*/

//Requirements:

class Geocode {

 // DEBUG MODE

 private $debug = 0;

 // SELECTED CITY

 private $city;

 // COORDINATES FOR EACH CORNER OF THE MAP (OM view)

 private $om_ul_long;

 private $om_ur_long;

 private $om_ll_long;

 private $om_lr_long;

 private $om_ul_lat;

 private $om_ur_lat;

 private $om_ll_lat;

 private $om_lr_lat;

 private $x_min;

 private $x_max;

 private $y_min;

 private $y_max;

 // LONGITUDE AND LATITUDE SLOPE

 private $slope_long;

 private $slope_lat;

 // GEOCODER BASE URL (REST)

 private $geocoder_api_rest = "http://rpc.geocoder.us/service/csv?address=";

 private $yahoo_geocoder_api_rest = "http://local.yahooapis.com/MapsService/V1/geocode?appid=WCZ107vV34Ed.N5OCPbHpRbalLm1nezhYnzoy597AvofLaVUQvItD3AQNNUGZQw-&location=";

 // Constructor

 public function __construct(){

 $city = "las vegas";

 $this->city = $city;

 switch($city){

 case "las vegas":

 $this->om_ul_long = -115.22015;

 $this->om_ul_lat = 36.15413611111111;

 $this->om_ur_long = -115.13938055555556;

 $this->om_ur_lat = 36.187127777777775;

 $this->om_ll_long = -115.17540277777778;

 $this->om_ll_lat = 36.084944444444446;

 $this->om_lr_long = -115.10328055555556;

 $this->om_lr_lat = 36.11882222222222;

 $this->x_min = 0;

 $this->x_max = 10565;

 $this->y_min = 0;

 $this->y_max = 4700;

 $this->slope_lat = (4029 - 3609)/(-2859 + 1000);

 $this->slope_long = (4299 - 3059)/(-1372 + 2888);

 break;

 default:

 }

 }

 public function geocode2omcode($latitude,$longitude){

 if($this->debug) echo "
Geocode::geocode2omcode
";

 if($this->debug) echo "
".$latitude."
".$longitude;

 if($longitude > $this->om_ul_long && $longitude < $this->om_lr_long && $latitude > $this->om_ll_lat && $latitude < $this->om_ur_lat){ // check to see if it's within the area (natural view)

 // Convert latitude to om code

 if($latitude < $this->om_lr_lat){

 $ratio_lat = ($latitude - $this->om_ll_lat)/($this->om_lr_lat - $this->om_ll_lat);

 // y = mx + b

 $b_lat_1 = (-1)*$this->y_max - ($this->slope_lat * $this->x_min);

 $b_lat_2 = (-1)*$this->y_max - ($this->slope_lat * $this->x_max);

 $b_lat = $b_lat_1 + (($b_lat_2 - $b_lat_1) * $ratio_lat); // ($b_lat - $b_lat_1)/($b_lat_2 - $b_lat_1) = $ratio_lat

 // y = ($this->slope_lat * x) + $b_lat

 if($this->debug) echo "
ll - lr
b1,b2: ".$b_lat_1.",".$b_lat_2."
ratio: ".$ratio_lat."
slope: ".$this->slope_lat."
b: ".$b_lat;

 }

 elseif($latitude < $this->om_ul_lat){

 $ratio_lat = ($latitude - $this->om_lr_lat)/($this->om_ul_lat - $this->om_lr_lat);

 // y = mx + b

 $b_lat_1 = (-1)*$this->y_max - ($this->slope_lat * $this->x_max);

 $b_lat_2 = (-1)*$this->y_min - ($this->slope_lat * $this->x_min);

 $b_lat = $b_lat_1 + (($b_lat_2 - $b_lat_1) * $ratio_lat); // ($b_lat - $b_lat_1)/($b_lat_2 - $b_lat_1) = $ratio_lat

 // y = ($this->slope_lat * x) + $b_lat

 IF($THIS->debug) echo "
lr - ul
b1,b2: ".$b_lat_1.",".$b_lat_2."
ratio: ".$ratio_lat."
slope: ".$this->slope_lat."
b: ".$b_lat;

 }

 else{

 $ratio_lat = ($latitude - $this->om_ul_lat)/($this->om_ur_lat - $this->om_ul_lat);

 // y = mx + b

 $b_lat_1 = (-1)*$this->y_min - ($this->slope_lat * $this->x_min);

 $b_lat_2 = (-1)*$this->y_min - ($this->slope_lat * $this->x_max);

 $b_lat = $b_lat_1 + (($b_lat_2 - $b_lat_1) * $ratio_lat); // ($b_lat - $b_lat_1)/($b_lat_2 - $b_lat_1) = $ratio_lat

 // y = ($this->slope_lat * x) + $b_lat

 if($this->debug) echo "
ul - ur
b1,b2: ".$b_lat_1.",".$b_lat_2."
ratio: ".$ratio_lat."
slope: ".$this->slope_lat."
b: ".$b_lat;

 }

 // Convert longitude to om code

 if($longitude < $this->om_ll_long){

 $ratio_long = ($longitude - $this->om_ul_long)/($this->om_ll_long - $this->om_ul_long);

 // y = mx + b

 $b_long_1 = (-1)*$this->y_min - ($this->slope_long * $this->x_min);

 $b_long_2 = (-1)*$this->y_max - ($this->slope_long * $this->x_min);

 $b_long = (-1) * ($b_long_1 + (($b_long_1 - $b_long_2) * $ratio_long)); // ($b_long - $b_long_1)/($b_long_2 - $b_long_1) = $ratio_long

 // y = ($this->slope_long * x) + $b_long

 if($this->debug) echo "
ul - ll
b1,b2: ".$b_long_1.",".$b_long_2."
ratio: ".$ratio_long."
slope: ".$this->slope_long."
b: ".$b_long;

 }

 elseif($longitude < $this->om_ur_long){

 $ratio_long = ($longitude - $this->om_ll_long)/($this->om_ur_long - $this->om_ll_long);

 // y = mx + b

 $b_long_1 = (-1)*$this->y_max - ($this->slope_long * $this->x_min);

 $b_long_2 = (-1)*$this->y_min - ($this->slope_long * $this->x_max);

 $b_long = $b_long_1 + (($b_long_2 - $b_long_1) * $ratio_long); // ($b_long - $b_long_1)/($b_long_2 - $b_long_1) = $ratio_long

 // y = ($this->slope_long * x) + $b_long

 if($this->debug) echo "
ll - ur
b1,b2: ".$b_long_1.",".$b_long_2."
ratio: ".$ratio_long."
slope: ".$this->slope_long."
b: ".$b_long;

 }

 else{

 $ratio_long = ($longitude - $this->om_ur_long)/($this->om_lr_long - $this->om_ur_long);

 // y = mx + b

 $b_long_1 = (-1)*$this->y_min - ($this->slope_long * $this->x_max);

 $b_long_2 = (-1)*$this->y_max - ($this->slope_long * $this->x_max);

 $b_long = $b_long_1 + (($b_long_2 - $b_long_1) * $ratio_long); // ($b_long - $b_long_1)/($b_long_2 - $b_long_1) = $ratio_long

 // y = ($this->slope_long * x) + $b_long

 if($this->debug) echo "
ur - lr
b1,b2: ".$b_long_1.",".$b_long_2."
ratio: ".$ratio_long."
slope: ".$this->slope_long."
b: ".$b_long;

 }

 // Find intersection of the 2 lines

 $x = ($b_long - $b_lat) / ($this->slope_lat - $this->slope_long); // (this->slope_long * x) + $b_long = ($this->slope_lat * x) + $b_lat

 $y = (-1)*(($this->slope_lat * $x) + $b_lat);

 if($this->debug) echo "
".$x.",".$y;

 $omcode[0] = $x;

 $omcode[1] = $y;

 return $omcode;

 }

 else{

 // outside of map area

 }

 }

Patent #2 OSAT Mobile Integrator:

Inventors: Eddie Kim, Jonathan Lee

Business Concept

The Mobile Integrator has a component on the client side, the mobile device, and a component on the Onionmap Server side. Mobile user can download Onionmap Mobile Integrator for free. The Onionmap Server side has the knowledge of each Onionmap OSAT map and user profile.
Through the Mobile Integrator, when user uses a mobile device with GPS chip and access OSAT mobile map, it will show user’s current location on the OSAT mobile map. Patent #1 Translation OSAT-Geocode is integrated into both client and server side components.
Some business rules are intelligently applied to the Mobile Integrator to facilitate user experience in real time. This includes the information that they are searching, serving related advertising, making reservation and conducting value-added business and consumer activities and transactions, all on an OSAT mobile map.
Onionmap supports Mobile devices such as iPhone and the top smart phones with GPS chips.

We intent to patent the following:

1. Mobile Integrator Server Side Component: how it intelligently presenting related information based on user profile on an OSAT mobile map. How it communicates with third party marketing and sales tools in real time. How it calculate the way to serve advertising and reservation information. How it changes its behavior according to mobile user behavior. All these complex calculation in one second. With this component, user will experience different things as their location changed.
2. Mobile Integrator Client Side Component: the piece with the Patent #1 Translation OSAT-Geocode and the light layer of ‘anticipating’ user behavior for the performance communicating with the Server Side Component.

Product and Technology

The product Mobile Integrator is currently under development and the prototype is expected by October, 2009.
Patent #3 OSAT Mobile Applications:

Inventors: Cathy Hwang, Eddie Kim, Jonathan Lee, Young Kim
Note: Onionmap are not sure whether we want to patent OSAT Mobile Applications. We may choose to freely distribute OSAT Mobile Application and Open Source. This is to have a massive distributions and penetration on OSAT Mobile Applications on all major smart phone mobile devices.

Onionmap Mobile City Map

This is a city map in mobile form. User will see their real time location and all the services available to them. They can twitter or text with their friends based on the location and availability of their friend in real time. Many simple functions on the mobile map will be provided.

Onionmap My Map

User can create their own map to model their own life and link all information they want to them in real time based on their location. For example, user creates his own map with Onionmap POIs and his own POIs in the map. The user wants the traffic information, weather information, his favorite restaurant reservation number, etc. When user turns on the mobile device, all related information will be ‘push’ to him in real time.
Onionmap Event Map

Mobile map for Super bowl in Arlington, River to River event for New York City, Annual Surfing competition at Huntington Beach, California, etc
More to come tomorrow…

Product and Technology

The product Mobile Integrator is currently under development and the prototype is expected by October, 2009.

Patent #4 OSAT Analysis Engine:
Inventors: Jonathan Lee, Eddie Kim, Young Kim
This is a business analysis on the innovative OSAT maps and their online real time interactions with users and businesses. The results and findings may prove Onionmap products, in certain area, are far more effective than current leading online reservation and advertising business models.
The certain areas of businesses are where the POIs are concentrated and can be modeled by OSAT. The example are Las Vegas Strip, New York City River to River event, the annual surfing event at Huntington Beach, California, the super bowl event in the new Arlington stadium, My Itinerary, My Wedding Day, My custom map and many more. All these areas have many users focus on a handful POIs for reservation, advertising and other businesses activities. OSAT maps and their patented products and technology can be proved by the OSAT Analysis Engine to be far more effective than current searching, advertising, and reservation business models such as Google, Yahoo, and Expedia etc.

This Analysis Engine is currently under development and expected to be ready for patent in October, 2009.

